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ABSTRACT

An acoustic con�dence measure for acceptance/rejection
of recognition hypotheses for continuous speech utterances
is proposed. This measure is useful for rejecting utterances
that are out of domain, or contain out-of-vocabulary words
or speech dis
uencies. A phone-based approach is imple-
mented so that a single global threshold can be applied to
hypothesis rejection for any word sequence. Phone con�-
dence is computed for each frame of speech as the posterior
phone probability given the acoustic observation. Word se-
quence con�dence is evaluated as the average phone con�-
dence, either by weighting all frames equally or by normal-
izing by phone duration. The con�dence measure is tested
on a database of spoken company names. When normal-
ized by phone duration, it achieves, in some cases with less
computational expense, rejection performance comparable
to a baseline system implementing a common �ller-model
approach. When all frames are equally weighted, perfor-
mance is substantially poorer.

1. INTRODUCTION

When continuous speech recognition systems are �elded to a
large community of users, especially infrequent users (e.g.,
callers of a telephone information service), it is common
that many spoken inputs do not fall within the domain
that the recognition system is designed to handle. This
may be due to speech dis
uencies on the part of the user
(e.g., hesitations, word fragments, corrections), an incom-
plete language model (i.e., the system does not model all
the word strings users say), or a poor understanding of the
domain by the user (i.e., the user does not understand the
range of inputs allowable at that point in the interaction).
The ability to reject out-of-domain utterances is essential
for the design of user-friendly interfaces.

A number of rejection approaches have been suggested in
the past for rejection of putative hits in keyword spotting
(e.g., [1, 2, 3, 4, 5, 6, 7]), for detection of out-of-vocabulary
words (e.g., [8]), and for utterance rejection (e.g., [8, 9]).
Some of these systems use a �ller model to match non-
keyword speech. A typical �ller model is a set of context-
independent phonetic models. Also, some systems use anti-
keyword models. For example, in the digit recognition sys-
tem in [9], for each digit, an anti-digit model was trained
on all digits except the target digit. A central issue in all
these approaches is the normalization of acoustic likelihood

scores of recognition hypotheses.

We propose a phone-based con�dence measure for reject-
ing recognition hypotheses. A recognition hypothesis (for
an uttered word sequence) is rejected if its overall con�-
dence score falls below a threshold. Two variations of the
phone-based con�dence measure are compared. Although
we demonstrate here the application of our rejection strat-
egy to a system without keyword spotting ability (i.e., the
case when the only acceptable inputs are in-domain spoken
word sequences unaccompanied by extraneous speech), the
same strategy can be used for rejecting putative keyword
hits while wordspotting.

Section 2 describes the con�dence measure, Section 3 de-
scribes experimental results, and Section 4 presents conclu-
sions and future directions.

2. PHONE-BASED CONFIDENCE MEASURE

Let PH = fPH1; PH2; :::;PHNg be a Viterbi de-
coded sequence of phones for a spoken utterance.
Let O = fO1;O2; :::;OT g be the acoustic obser-
vation sequence for the utterance. Equivalently,
O = fOb[1]; :::;Oe[1];Ob[2]; :::;Oe[2]; :::;Ob[N ]; :::;Oe[N ]g,
where b[i] and e[i] denote, respectively, the beginning and
ending frames of the ith phone. Note that b[1] = 1 and
e[N ] = T . Although our recognition system uses context-
dependent phones, context-independentphones are used (for
implementation reasons) to calculate the acoustic con�-
dence measure (ACM), for which there are two variations,
ACM1 and ACM2. ACM1 (Equation 1) is the average
per-frame log phone posterior probability. ACM2 (Equa-
tion 2) is the average duration-normalized log phone poste-
rior probability. The important distinction is that ACM1

weights all frames equally in their contribution to the over-
all con�dence, whereas ACM2 weights all phones equally.

Equation 3 de�nes the posterior phone probability for Ot.
In Equation 3, the local acoustic observation likelihood for
a given phone, p(OtjPHj), is computed as the maximum
of the likelihood scores of the acoustic observation over all
3 states of the context-independent phone hidden Markov
model (HMM). The denominator of Equation 3 is a sum
over all context-independent phone HMMs in a phonetically
tied mixture system (a system in which only HMM states
that belong to allophones of the same phone share the same
mixture components). Note that for a phonetically tied
mixture system, the denominator is exactly p(Ot), the un-
conditional likelihood of the acoustic observation, consider-



ing all context-dependent phone models in the system. This
is not the case for a general genonic tied mixture system
[10].
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3. EXPERIMENTAL RESULTS

We conducted experiments using a database of company
names spoken over the telephone to an HMM-based pho-
netically tied mixture continuous speech recognition sys-
tem. The a priori context-independent phone probabilities,
needed for Equation 3, were available from an independent
database. The recognition task is to recognize which of
12,000 company names was spoken. The test set contains
916 utterances. Approximately one third of these (296 ut-
terances) are not valid for the application, containing either
no company name in the utterance, a company name not
handled by the system, an acceptable company name with
extraneous speech, or a subtle variant of an acceptable com-
pany name. In the test set, there are many tokens of such
subtle variants as well as many in-domain company names
that di�er by only one or two phones. This makes the task
rather challenging. The 296 utterances are what we refer
to as out-of-domain utterances. The goal is to maximize
rejection, or equivalently, to minimize false acceptance of
these out-of-domain utterances. All other utterances are
considered in domain, and should not be rejected.
Figure 1 shows recognition accuracy on the in-domain

utterances as a function of false acceptance rate on the out-
of-domain utterances. The baseline uses a rejection model
implemented previously in a number of other systems (e.g.,
[3]), based on a �ller model consisting of a set of context-
independent phones. A weight is used to adjust the tradeo�
between correct acceptance (i.e., not rejecting an in-domain
utterance) and correct rejection performance (i.e., rejecting
an out-of-domain utterance). The ACM1 and ACM2 sys-
tems use a threshold to determine when to reject a recogni-
tion hypothesis. For computing the hypothesis con�dence
via ACM1 and ACM2, regions recognized as non-speech
were ignored.
It is clear from the �gure that the con�dence measure that

weights all frames equally (ACM1) performs signi�cantly
worse than that which weights all phones equally (ACM2)
for all false acceptance rates. One possible reason for this is
the following. When the recognized word sequence shares
many phones with the correct word sequence, but has sev-

Figure 1. Rejection Method Performance Compar-
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eral extra phones, the corresponding phone HMMs for these
extra phones must be traversed across an acoustic observa-
tion region which corresponds to uttered phones that are
di�erent from those recognized. Typically, in order to get
the best recognition match, these phones will have minimal
duration in the Viterbi backtrace. In our system, the mini-
mal duration is 3 frames for our 3-state phone models. Fur-
thermore, since these recognized phones are incorrect, they
typically have very poor likelihood scores. In these cases,
the con�dence measure more sensitive to these 3 frames of
very poor likelihood scores would be able to identify the mis-
recognition and reject. Since ACM2 weights phones equally,
these very poor likelihood scores would have more weight.
In contrast, for (ACM1), since these phones have a minimal
Viterbi duration (3 frames in our system), they would have
less weight. We have started to investigate this theory and
there is anecdotal evidence that it's valid.
ACM2 achieved the same recognition accuracy as the

baseline �ller model for false acceptance rates greater than
22 percent. In some cases, the ACM2 approach may be
less expensive to implement than the �ller-model approach.
At lower false acceptance rates, the baseline model outper-
formed both ACM1 and ACM2, although the recognition
accuracy for all methods was quite poor in this region.

4. CONCLUSIONS AND FUTURE

DIRECTIONS

An acoustic con�dence measure (ACM) for word-string hy-
potheses is proposed. The hypothesis con�dence is evalu-
ated as the average phone con�dence. We experimented
with two variations of the acoustic con�dence measure,
one that weights all frames equally (ACM1), and one that
weights all phones equally by normalizing for phone dura-
tion (ACM2).
ACM2 provided performance comparable to our baseline

system, that uses a set of context-independent phones as



a �ller model. The ACM2 scheme may be less expensive
to implement than the �ller-model approach in some cases.
ACM1 provided signi�cantly worse performance. There is
anecdotal evidence that this poorer performance is due to
ACM1's lower sensitivity to outlier, very poor likelihood
scores that occur in minimal-duration phones typically in-
dicative of a misrecognition in which the hypothesis shares
many phones with, but has several more phones than the
correct word sequence.
One issue that we wish to address next is normalizing the

phone con�dences with respect to phone model performance
[11]. Also, from our comparison of ACM1 and ACM2, it
seems it would be advantageous to incorporate durational
information in con�dence scoring (i.e., rather than just nor-
malizing for duration). In addition, we wish to use context-
dependent phone models to evaluate con�dence measures in
order to improve the estimation of posterior phone proba-
bilities. Finally, we would like to apply our approach to a
keyword spotting system in which we would compute word-
level con�dences as an average of the phone con�dences for
the phones making up the word. For this task, the con-
�dence measure presented here could be used, and, with
proper normalization [11], a single threshold could accom-
modate all keywords, eliminating the problem of determin-
ing thresholds for keywords that are uncommon.
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